

Manifold Sampling for Piecewise Linear Nonconvex Optimization

Jeffrey Larson, Kamil Khan, Stefan Wild

Argonne National Laboratory

May 25, 2017

We are interested in solving the problem:

$$\underset{x \in \mathbb{R}^n}{\text{minimize}} \quad f(x) \triangleq \psi(x) + h(F(x))$$

where
$$\psi: \mathbb{R}^n \to \mathbb{R}$$
, $F: \mathbb{R}^n \to \mathbb{R}^p$, $h: \mathbb{R}^p \to \mathbb{R}$,

We are interested in solving the problem:

$$\underset{x \in \mathbb{R}^n}{\text{minimize}} \quad f(x) \triangleq \psi(x) + h(F(x))$$

where
$$\psi: \mathbb{R}^n \to \mathbb{R}$$
, $F: \mathbb{R}^n \to \mathbb{R}^p$, $h: \mathbb{R}^p \to \mathbb{R}$, and

 $ightharpoonup \psi$ is smooth with known derivatives

We are interested in solving the problem:

$$\underset{x \in \mathbb{R}^n}{\text{minimize}} \quad f(x) \triangleq \psi(x) + h(F(x))$$

where
$$\psi: \mathbb{R}^n \to \mathbb{R}$$
, $F: \mathbb{R}^n \to \mathbb{R}^p$, $h: \mathbb{R}^p \to \mathbb{R}$, and

- $ightharpoonup \psi$ is smooth with known derivatives
- ▶ h is nonsmooth, piecewise linear, and has a known structure (cheap to evaluate)

We are interested in solving the problem:

$$\underset{x \in \mathbb{R}^n}{\text{minimize}} \quad f(x) \triangleq \psi(x) + h(F(x))$$

where
$$\psi: \mathbb{R}^n \to \mathbb{R}$$
, $F: \mathbb{R}^n \to \mathbb{R}^p$, $h: \mathbb{R}^p \to \mathbb{R}$, and

- $\blacktriangleright \psi$ is smooth with known derivatives
- h is nonsmooth, piecewise linear, and has a known structure (cheap to evaluate)
- ► F is smooth, nonlinear, and has a relatively unknown structure (expensive to evaluate)

We are interested in solving the problem:

$$\underset{x \in \mathbb{R}^n}{\text{minimize}} \quad f(x) \triangleq \psi(x) + h(F(x))$$

where
$$\psi: \mathbb{R}^n \to \mathbb{R}$$
, $F: \mathbb{R}^n \to \mathbb{R}^p$, $h: \mathbb{R}^p \to \mathbb{R}$, and

- $\blacktriangleright \psi$ is smooth with known derivatives
- h is nonsmooth, piecewise linear, and has a known structure (cheap to evaluate)
- ► F is smooth, nonlinear, and has a relatively unknown structure (expensive to evaluate)

Piecewise linear h does not imply $h \circ F$ is piecewise linear.

Notes

▶ The *manifold sampling* framework does not require the availability of the Jacobian ∇F .

Notes

▶ The *manifold sampling* framework does not require the availability of the Jacobian ∇F .

▶ Applicable both when inexact values for $\nabla F(x)$ are available and in the derivative-free case, when only F(x) is available.

Notes

► The manifold sampling framework does not require the availability of the Jacobian ∇F.

▶ Applicable both when inexact values for $\nabla F(x)$ are available and in the derivative-free case, when only F(x) is available.

▶ We will build component models m^{F_i} of each F_i around points x. We can then use $\nabla M(x) \in \mathbb{R}^{n \times p}$ where

$$\nabla M(x) \triangleq \left[\nabla m^{F_1}(x), \ldots, \nabla m^{F_p}(x)\right].$$

Piecewise linear functions

Definition

A function $h\colon \mathbb{R}^p \to \mathbb{R}$ is piecewise linear if h is continuous and there exists a finite collection $\mathfrak{H} \triangleq \{h_i : i=1,\ldots,\hat{m}\}$ of affine functions that map \mathbb{R}^p into \mathbb{R} , for which

$$h(z) \in \{\tilde{h}(z) : \tilde{h} \in \mathfrak{H}\}, \quad \forall z \in \mathbb{R}^p.$$

- \blacktriangleright h is a continuous selection of \mathfrak{H} .
- ▶ Elements of \mathfrak{H} are selection functions of h.
- ▶ $h_i : z \in \mathbb{R}^p \mapsto \langle a_i, z \rangle + b_i$ for each i.

Piecewise linear functions

Definition

A function $h \colon \mathbb{R}^p \to \mathbb{R}$ is *piecewise linear* if h is continuous and there exists a finite collection $\mathfrak{H} \triangleq \{h_i : i = 1, \dots, \hat{m}\}$ of affine functions that map \mathbb{R}^p into \mathbb{R} , for which

$$h(z) \in \{\tilde{h}(z) : \tilde{h} \in \mathfrak{H}\}, \quad \forall z \in \mathbb{R}^p.$$

- h is a continuous selection of \mathfrak{H} .
- ▶ Elements of \mathfrak{H} are selection functions of h.
- ▶ $h_i: z \in \mathbb{R}^p \mapsto \langle a_i, z \rangle + b_i$ for each i.

Definition

$$S_i \triangleq \{y : h(y) = h_i(y)\}, \quad \tilde{S}_i \triangleq \mathbf{cl}\left(\mathbf{int}\left(S_i\right)\right), \quad I_h(z) \triangleq \left\{i : z \in \tilde{S}_i\right\},$$

 h_i for $i \in I_h(z)$ is an essentially active selection function for h at z.

Essentially active

Essentially active

Laser pulse propagating in a plasma channel

Determine plasma channel properties that minimize the maximum difference in the laser intensity.

$$f(x) = \max_{\Omega_1} \{F_i(x)\} - \min_{\Omega_2} \{F_i(x)\}$$

Formulation

$$h(F(x)) = \max \{ \sin(2x) + 1, \cos(2x), x \} - \min \{ \sin(2x) + 1, \cos(2x), x \}$$

A generalized derivative

Definition

The generalized Clarke subdifferential of f at x is defined as

$$\partial_{\mathbf{C}} f(x) \triangleq \mathbf{co} \left(\left\{ \xi : \xi = \lim_{y^j \to x} \nabla f(y^j) : y^j \in \mathcal{D} \right\} \right),$$

where $co(\cdot)$ denotes the convex hull.

A generalized derivative

Definition

The generalized Clarke subdifferential of f at x is defined as

$$\partial_{\mathbf{C}} f(x) \triangleq \mathbf{co} \left(\left\{ \xi : \xi = \lim_{y^j \to x} \nabla f(y^j) : y^j \in \mathcal{D} \right\} \right),$$

where $co(\cdot)$ denotes the convex hull.

For our case:

$$\partial_{\mathbf{C}} h(z) = \mathbf{co} (\{a_i : i \in I_h(z)\})$$

A generalized derivative

Definition

The generalized Clarke subdifferential of f at x is defined as

$$\partial_{\mathbf{C}} f(x) \triangleq \mathbf{co} \left(\left\{ \xi : \xi = \lim_{y^j \to x} \nabla f(y^j) : y^j \in \mathcal{D} \right\} \right),$$

where $co(\cdot)$ denotes the convex hull.

For our case:

$$\partial_{\mathbf{C}} h(z) = \mathbf{co} (\{a_i : i \in I_h(z)\})$$

Definition

A point x is called a *Clarke stationary* point of f if $0 \in \partial_{\mathbf{C}} f(x)$.

▶ Generator set \mathfrak{G}^k

▶ Generator set \mathfrak{G}^k

► Smooth master model m_k^f

▶ Generator set 𝔥^k

▶ Smooth master model m_k^f

► Trust-region subproblem solution *s*^k

▶ Generator set 𝔥^k

▶ Smooth master model m_k^f

► Trust-region subproblem solution *s*^k

▶ Measuring decent with ρ_k

Generator set

At some iterate x^k ,

$$\mathfrak{G}^k \triangleq \bigcup_{i \in I_h(F(x^k))} \left\{ \nabla \psi(x^k) + \nabla M(x^k) a_i \right\}$$

where $I_h(F(x^k))$ is the set of essentially active indices.

Generator set

At some iterate x^k ,

$$\mathfrak{G}^k \triangleq \bigcup_{i \in I_h(F(x^k))} \left\{ \nabla \psi(x^k) + \nabla M(x^k) a_i \right\}$$

where $I_h(F(x^k))$ is the set of essentially active indices.

Or, given a set of points
$$Y = \left\{ x^k, y^2, \dots, y^p \right\} \subset \mathcal{B}(x^k, \Delta_k)$$
 ,

$$\mathfrak{G}^k \triangleq \bigcup_{y \in Y} \bigcup_{i \in I_h(F(y))} \left\{ \nabla \psi(x^k) + \nabla M(x^k) a_i \right\}$$

Generator set

At some iterate x^k ,

$$\mathfrak{G}^k \triangleq \bigcup_{i \in I_h(F(x^k))} \left\{ \nabla \psi(x^k) + \nabla M(x^k) a_i \right\}$$

where $I_h(F(x^k))$ is the set of essentially active indices.

Or, given a set of points $Y = \left\{x^k, y^2, \dots, y^p\right\} \subset \mathcal{B}(x^k, \Delta_k)$,

$$\mathfrak{G}^k \triangleq \bigcup_{y \in Y} \bigcup_{i \in I_h(F(y))} \left\{ \nabla \psi(x^k) + \nabla M(x^k) a_i \right\}$$

Assumption

The set \mathfrak{G}^k satisfies

$$\begin{aligned} \left\{ \nabla \psi(x^k) + \nabla M(x^k) \, a_i : i \in I_h(F(x^k)) \right\} \subseteq \mathfrak{G}^k \\ \mathfrak{G}^k \subseteq \left\{ \nabla \psi(x^k) + \nabla M(x^k) \, a_i : y \in \mathcal{B}\left(x^k; \Delta_k\right), i \in I_h(F(y)) \right\}. \end{aligned}$$

Smooth master model

Our model gradients around iterate x^k satisfy

$$g^{k} riangleq extbf{proj}\left(0, extbf{co}\left(\mathfrak{G}^{k}
ight)
ight) \in extbf{co}\left(\mathfrak{G}^{k}
ight)$$
 ,

Let λ^* be the corresponding coefficients so that $g^k = G^k \lambda^*$.

Smooth master model

Our model gradients around iterate x^k satisfy

$$g^{k} riangleq extsf{proj}\left(0, extsf{co}\left(\mathfrak{G}^{k}
ight)
ight) \in extsf{co}\left(\mathfrak{G}^{k}
ight)$$
 ,

Let λ^* be the corresponding coefficients so that $g^k = G^k \lambda^*$.

Define

$$A^k \triangleq \left[egin{array}{ccc} | & | & | \\ a_{j_1} & \cdots & a_{j_t} \\ | & & | \end{array}
ight],$$

and set $w^k = A^k \lambda^*$. Define the smooth master model $m_k^f : \mathbb{R}^n \to \mathbb{R}$,

$$m_k^f(x) \triangleq \psi(x^k) + \sum_{i=1}^p w_i^k m^{F_i}(x) + \sum_{i=1}^p \lambda_i^* b_{j_i}.$$

Trust region subproblem

Approximately solve

minimize
$$m_k^f(x^k + s)$$

subject to: $s \in \mathcal{B}(0, \Delta_k)$

to obtain a solution s satisfying

$$\psi(x^k) - \psi(x^k + s) + \left\langle M(x^k) - M(x^k + s), w^k \right\rangle \ge \frac{\kappa_{\mathrm{d}}}{2} \|g^k\| \min \left\{ \Delta_k, \frac{\|g^k\|}{\kappa_{\mathrm{mh}}} \right\}.$$

ightharpoonup Descent is measured using some selection function $h^{(k)}$ and not h

ightharpoonup Descent is measured using some selection function $h^{(k)}$ and not h

▶ Must ensure information about $h^{(k)}$ is in \mathfrak{G}^k before taking a step

ightharpoonup Descent is measured using some selection function $h^{(k)}$ and not h

▶ Must ensure information about $h^{(k)}$ is in \mathfrak{G}^k before taking a step

► *h*^(k) must satisfy

$$h^{(k)}(F(x^k)) \le h(F(x^k))$$
 and $h^{(k)}(F(x^k + s^k)) \ge h(F(x^k + s^k)),$

▶ Descent is measured using some selection function $h^{(k)}$ and not h

▶ Must ensure information about $h^{(k)}$ is in \mathfrak{G}^k before taking a step

▶ h^(k) must satisfy

$$h^{(k)}(F(x^k)) \le h(F(x^k))$$
 and $h^{(k)}(F(x^k + s^k)) \ge h(F(x^k + s^k))$,

$$\rho_{k} \triangleq \frac{\psi(x^{k}) - \psi(x^{k} + s^{k}) + h^{(k)}(F(x^{k})) - h^{(k)}(F(x^{k} + s^{k}))}{\psi(x^{k}) - \psi(x^{k} + s^{k}) + \langle M(x^{k}) - M(x^{k} + s^{k}), a^{(k)} \rangle}$$

Algorithm components

▶ Generator set &^k

▶ Smooth master model m_k^f

► Trust-region subproblem solution *s*^k

▶ Measuring decent with ρ_k

Algorithm MS4PL

```
Choose initial iterate x^0 and trust-region radius \Delta_0 > 1
for k = 0, 1, 2, ... do
      Build p component models m^{F_i} that are fully linear on \mathcal{B}(x^k, \Delta_k)
      Form \nabla M(x^k) using \nabla m^{F_i}(x^k) and construct \mathfrak{G}^k \subset \mathbb{R}^n
      \rho_k \leftarrow -\infty
      while \rho_k = -\infty do
            Update component models m^{F_i}; build master model m^f
            if \Delta_k < \eta_2 \|\nabla m^f(x^k)\| (acceptability criterion) then
                  Approximately solve TRSP to obtain s^k
                  Evaluate F(x^k + s^k) and find h^{(k)}
                  if (\nabla \psi(x^k) + \nabla M(x^k) a^{(k)}) \in \mathfrak{G}^k then
                        Calculate \rho_k
                  else
                     | \mathfrak{G}^k \leftarrow \mathfrak{G}^k \cup \{ \nabla \psi(x^k) + \nabla M(x^k) a^{(k)} \} 
            else
                  break out of while-loop; iteration is unacceptable
      if \rho_k > \eta_1 > 0 (successful iteration) then
           x^{k+1} \leftarrow x^k + s^k, \Delta_{k+1} \leftarrow \min\{\gamma_{inc}\Delta_k, \Delta_{max}\}\
      else
           x^{k+1} \leftarrow x^k, \Delta_{k+1} \leftarrow \gamma_{\mathrm{dec}} \Delta_k
```


Generator set

At some iterate x^k ,

$$\mathfrak{G}^k \triangleq \bigcup_{i \in I_h(F(x^k))} \left\{ \nabla \psi(x^k) + \nabla M(x^k) a_i \right\}$$

where $I_h(F(x^k))$ is the set of essentially active indices.

Generator set

At some iterate x^k ,

$$\mathfrak{G}^k \triangleq \bigcup_{i \in I_h(F(x^k))} \left\{ \nabla \psi(x^k) + \nabla M(x^k) a_i \right\}$$

where $I_h(F(x^k))$ is the set of essentially active indices.

Or, given a set of points $Y = \left\{ x^k, y^2, \dots, y^p \right\} \subset \mathcal{B}(x^k, \Delta_k)$,

$$\mathfrak{G}^k \triangleq \bigcup_{y \in Y} \bigcup_{i \in I_h(F(y))} \left\{ \nabla \psi(x^k) + \nabla M(x^k) a_i \right\}$$

▶ If the trust region radius Δ_k is a sufficiently small multiple of the master model gradient $||g^k||$, the iteration is guaranteed to be successful.

▶ If the trust region radius Δ_k is a sufficiently small multiple of the master model gradient $\|g^k\|$, the iteration is guaranteed to be successful.

 $\blacktriangleright \lim_{k\to\infty} \Delta_k = 0.$

▶ If the trust region radius Δ_k is a sufficiently small multiple of the master model gradient $\|g^k\|$, the iteration is guaranteed to be successful.

 $ightharpoonup \lim_{k\to\infty} \Delta_k = 0.$

▶ Some subsequence of master model gradients g^k goes zero.

▶ If the trust region radius Δ_k is a sufficiently small multiple of the master model gradient $\|g^k\|$, the iteration is guaranteed to be successful.

 $ightharpoonup \lim_{k\to\infty} \Delta_k = 0.$

▶ Some subsequence of master model gradients g^k goes zero.

▶ Zero is in the generalized Clarke subdifferential of cluster points of any subsequence of iterates with master model gradients converging to zero.

▶ If the trust region radius Δ_k is a sufficiently small multiple of the master model gradient $\|g^k\|$, the iteration is guaranteed to be successful.

 $\lim_{k \to \infty} \Delta_k = 0.$

▶ Some subsequence of master model gradients g^k goes zero.

➤ Zero is in the generalized Clarke subdifferential of cluster points of any subsequence of iterates with master model gradients converging to zero.

▶ The same holds for cluster points of the sequence of MS4PL iterates.

Let h be a censored ℓ_1 -loss function. Given data $d \in \mathbb{R}^p$, censors $c \in \mathbb{R}^p$, and the mapping $F : \mathbb{R}^n \to \mathbb{R}^p$, we define

$$f(x) = \sum_{i=1}^{p} |d_i - \max\{F_i(x), c_i\}|.$$

That is, $\psi = 0$, and

$$h(y) = \sum_{i=1}^{p} |d_i - \max\{y_i, c_i\}|.$$

24 of 32

Let h be a censored ℓ_1 -loss function. Given data $d \in \mathbb{R}^p$, censors $c \in \mathbb{R}^p$, and the mapping $F : \mathbb{R}^n \to \mathbb{R}^p$, we define

$$f(x) = \sum_{i=1}^{p} |d_i - \max\{F_i(x), c_i\}|.$$

That is, $\psi = 0$, and

$$h(y) = \sum_{i=1}^{p} |d_i - \max\{y_i, c_i\}|.$$

Define F to be the 53 vector mapping in the Móre and Wild benchmarking set. $2 \le n \le 12$, $2 \le p \le 45$.

$$f(x) = \sum_{i=1}^{p} |d_i - \max\{F_i(x), c_i\}|$$

Try to define d and c to introduce many points of nondifferentiability.

$$f(x) = \sum_{i=1}^{p} |d_i - \max\{F_i(x), c_i\}|$$

Try to define d and c to introduce many points of nondifferentiability.

Draw
$$c_i$$
 from $U(\ell_i, u_i)$

$$\ell_i = \min \{ F_i(x^0), F_i(x^*) \}$$
 and $u_i = \max \{ F_i(x^0), F_i(x^*) \}$.

Test problems

$$f(x) = \sum_{i=1}^{p} |d_i - \max\{F_i(x), c_i\}|$$

Try to define d and c to introduce many points of nondifferentiability.

Draw c_i from $U(\ell_i, u_i)$

$$\ell_i = \min \{F_i(x^0), F_i(x^*)\}$$
 and $u_i = \max \{F_i(x^0), F_i(x^*)\}$.

Make the (crude) assumption that $F_i(x) \sim U(\ell_i, u_i)$, then

$$\max\{c_i, F_i(x)\} \sim (u_i - \ell_i) * \beta(2, 1) + \ell_i.$$

Draw d_i from this distribution for $2 \le i \le p$.

Test problems

$$f(x) = \sum_{i=1}^{p} |d_i - \max\{F_i(x), c_i\}|$$

Try to define d and c to introduce many points of nondifferentiability.

Draw c_i from $U(\ell_i, u_i)$

$$\ell_i = \min \{F_i(x^0), F_i(x^*)\}$$
 and $u_i = \max \{F_i(x^0), F_i(x^*)\}$.

Make the (crude) assumption that $F_i(x) \sim U(\ell_i, u_i)$, then

$$\max\{c_i, F_i(x)\} \sim (u_i - \ell_i) * \beta(2, 1) + \ell_i.$$

Draw d_i from this distribution for $2 \le i \le p$.

Set
$$c_1 = -\infty$$
 and $d_1 = 0$.

Examples

Algorithms to compare

MS4PL-1 Using manifolds at x^k

MS4PL-2 Using manifolds in $\mathcal{B}(x^k, \Delta_k)$

Algorithms to compare

MS4PL-1 Using manifolds at x^k

MS4PL-2 Using manifolds in $\mathcal{B}(x^k, \Delta_k)$

PLC POUNDERs using a single manifold active at \boldsymbol{x}^k to form a master model

Algorithms to compare

MS4PL-1 Using manifolds at x^k

MS4PL-2 Using manifolds in $\mathcal{B}(x^k, \Delta_k)$

PLC POUNDERs using a single manifold active at x^k to form a master model

SLQP-GS Gradient sampling algorithm from Curtis

GRANSO BFGS-SQP algorithm Mitchell, Curtis, and Overton. (Can handle constraints too.)

Theorem (Rademacher)

If $S \subset \mathbb{R}^n$ is open and $f: S \to \mathbb{R}$ is locally Lipschitz on S, then f is differentiable almost everywhere on S.

1. Approximate $\partial f(x^k)$ by sampling $m \ge n+1$ points $x^{k,j}$ in $\mathcal{B}(x^k, \epsilon_k)$. Set

$$\mathfrak{G}^k = \operatorname{conv}\left\{\nabla f(x^{k,1}), \ldots, \nabla f(x^{k,m})\right\}$$

1. Approximate $\partial f(x^k)$ by sampling $m \ge n+1$ points $x^{k,j}$ in $\mathcal{B}(x^k, \epsilon_k)$. Set

$$\mathfrak{G}^k = \operatorname{conv}\left\{\nabla f(x^{k,1}), \dots, \nabla f(x^{k,m})\right\}$$

2. Set ξ^k to be the minimum norm element in \mathfrak{G}^k .

1. Approximate $\partial f(x^k)$ by sampling $m \ge n+1$ points $x^{k,j}$ in $\mathcal{B}(x^k, \epsilon_k)$. Set

$$\mathfrak{G}^k = \operatorname{conv}\left\{\nabla f(x^{k,1}), \ldots, \nabla f(x^{k,m})\right\}$$

- 2. Set ξ^k to be the minimum norm element in \mathfrak{G}^k .
- 3. Set α_k to be the smallest power s of $\gamma \in (0,1)$ satisfying

$$f(x^k + \gamma^s \xi^k) < f(x^k) - \beta \gamma^s \|\xi^k\|$$

1. Approximate $\partial f(x^k)$ by sampling $m \ge n+1$ points $x^{k,j}$ in $\mathcal{B}(x^k, \epsilon_k)$. Set

$$\mathfrak{G}^k = \operatorname{conv}\left\{\nabla f(x^{k,1}), \ldots, \nabla f(x^{k,m})\right\}$$

- 2. Set ξ^k to be the minimum norm element in \mathfrak{G}^k .
- 3. Set α_k to be the smallest power s of $\gamma \in (0, 1)$ satisfying

$$f(x^k + \gamma^s \xi^k) < f(x^k) - \beta \gamma^s ||\xi^k||$$

4. If $\nabla f(x^k + \alpha_k \xi^k)$ exists, $x^{k+1} = x^k + \alpha_k \xi^k$. Else, find a point in $\hat{x} \in \mathcal{B}(x^k, \epsilon_k)$ satisfying

$$f(\hat{x}^k + \gamma^s \xi^k) < f(x^k) - \beta \alpha_k \|\xi^k\|$$

and set $x^{k+1} = \hat{x}^k + \alpha_k \xi^k$.

1. Approximate $\partial f(x^k)$ by sampling $m \ge n+1$ points $x^{k,j}$ in $\mathcal{B}(x^k, \epsilon_k)$. Set

$$\mathfrak{G}^k = \operatorname{conv}\left\{\nabla f(x^{k,1}), \ldots, \nabla f(x^{k,m})\right\}$$

- 2. Set ξ^k to be the minimum norm element in \mathfrak{G}^k .
- 3. Set α_k to be the smallest power s of $\gamma \in (0,1)$ satisfying

$$f(x^k + \gamma^s \xi^k) < f(x^k) - \beta \gamma^s ||\xi^k||$$

4. If $\nabla f(x^k + \alpha_k \xi^k)$ exists, $x^{k+1} = x^k + \alpha_k \xi^k$. Else, find a point in $\hat{x} \in \mathcal{B}(x^k, \epsilon_k)$ satisfying

$$f(\hat{x}^k + \gamma^s \xi^k) < f(x^k) - \beta \alpha_k ||\xi^k||$$

and set $x^{k+1} = \hat{x}^k + \alpha_k \xi^k$.

▶ Iterates must not be points of nondifferentiability

1. Approximate $\partial f(x^k)$ by sampling $m \ge n+1$ points $x^{k,j}$ in $\mathcal{B}(x^k, \epsilon_k)$. Set

$$\mathfrak{G}^k = \operatorname{conv}\left\{\nabla f(x^{k,1}), \ldots, \nabla f(x^{k,m})\right\}$$

- 2. Set ξ^k to be the minimum norm element in \mathfrak{G}^k .
- 3. Set α_k to be the smallest power s of $\gamma \in (0,1)$ satisfying

$$f(x^k + \gamma^s \xi^k) < f(x^k) - \beta \gamma^s ||\xi^k||$$

4. If $\nabla f(x^k + \alpha_k \xi^k)$ exists, $x^{k+1} = x^k + \alpha_k \xi^k$. Else, find a point in $\hat{x} \in \mathcal{B}(x^k, \epsilon_k)$ satisfying

$$f(\hat{x}^k + \gamma^s \xi^k) < f(x^k) - \beta \alpha_k \|\xi^k\|$$

and set $x^{k+1} = \hat{x}^k + \alpha_k \xi^k$.

- Iterates must not be points of nondifferentiability
- Significant sampling may be required

f test A method s solves a problem p to a level τ after j function evaluations if

$$f(x^0) - f(x^j) \ge (1 - \tau)(f(x^0) - \tilde{f}_p)$$

 \mathbf{x}^0 is the problem's starting point, and \tilde{f}_p is the best-found function value.

f test A method s solves a problem p to a level τ after j function evaluations if

$$f(x^0) - f(x^j) \ge (1 - \tau)(f(x^0) - \tilde{f}_p)$$

 x^0 is the problem's starting point, and \tilde{f}_p is the best-found function value.

 $\partial_{\mathrm{C}} f$ test Sample gradients.

f test A method s solves a problem p to a level τ after j function evaluations if

$$f(x^0) - f(x^j) \ge (1 - \tau)(f(x^0) - \tilde{f}_p)$$

 x^0 is the problem's starting point, and \tilde{f}_p is the best-found function value.

 $\partial_{\mathbf{C}} f$ test Sample gradients.

Draw 30 points uniformly from $B(x^j, 10^{-8})$ for each point x^j evaluated by each method.

f test A method s solves a problem p to a level τ after j function evaluations if

$$f(x^0) - f(x^j) \ge (1 - \tau)(f(x^0) - \tilde{f}_p)$$

 x^0 is the problem's starting point, and \tilde{f}_p is the best-found function value.

 $\partial_{\mathbf{C}} f$ test Sample gradients.

Draw 30 points uniformly from $B(x^j, 10^{-8})$ for each point x^j evaluated by each method.

s solves p to a level τ after j function evaluations if

$$\left\| ilde{g}^{j}
ight\| \leq au \left\| ilde{g}^{0}
ight\|$$

Conclusions

When optimizing functions of the form h(F(x)) when

- ► h is "easy"
- ► *F* is "hard"

it can be advantageous to model F_i and then combine those models via known information about h.

Conclusions

When optimizing functions of the form h(F(x)) when

- ► h is "easy"
- ► *F* is "hard"

it can be advantageous to model F_i and then combine those models via known information about h.

Email jmlarson@anl.gov for a preprint.

Thank you!